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ABSTRACT 
This paper presents a multiscale data integration method to estimate the spatial 
distribution of air dose rates in the regional scale around the Fukushima Daiichi 
Nuclear Power Plant. We integrate various types of datasets, such as ground-based 
walk and car surveys, and airborne surveys, all of which have different scales, 
resolutions, spatial coverage, and accuracy. This method is based on geostatistics 
to represent spatial heterogeneous structures, and also on Bayesian hierarchical 
models to integrate multiscale, multitype datasets in a consistent manner. The 
Bayesian method allows us to quantify the uncertainty in the estimates, and to 
provide the confidence intervals that are critical for robust decision-making. 
Although this approach is primarily data-driven, it has great flexibility to include 
mechanistic models for representing radiation transport or other complex 
correlations. We demonstrate our approach using three types of datasets collected 
at the same time over Fukushima City, Japan: (1) coarse-resolution airborne 
surveys covering the entire area, (2) car surveys along major roads, and (3) walk 
surveys in multiple neighborhoods. Results show that the method can successfully 
integrate three types of datasets in a consistent manner, and create an integrated 
map (including the confidence intervals) of air dose rates over the domain in high 
resolution.  
 
INTRODUCTION 
 
Radiation measurements and monitoring in the region around the Fukushima 
Daiichi NPP have been performed continuously since the accident [1,2]. Since the 
accident, radiation measurements have been conducted using various techniques 
and platforms such as walk, car and airborne surveys. Such mapping efforts are 
essential to protect the public, guide decontamination efforts, estimate the amount 
of decontamination waste, and plan the return of evacuated residents. 
 
With many data survey types available, however, it has become clear that there are 
discrepancies among them in terms of measured dose-rate values, even collected 
at the same time and same locations. Most discrepancies are due to the fact that 
each type of data has a different level of accuracy and a different support scale 
(i.e., support volume, resolution). For example, airborne surveys measure average 
dose rates over a much larger area (typically a several-hundred-meter radius) than 
ground-based measurements (~several tens of meters). Such averaging becomes 
particularly problematic, because detailed surveys with handheld monitors (i.e., 
walk surveys) often find that soil contamination and radiation dose rates are both 
highly heterogeneous, having many hotspots [3]. Physics-based radiation transport 
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modeling by Malins et al. [4] also showed that the uncertainty in the above-ground 
dose-rate measurements is associated with the horizontal heterogeneity of cesium 
distribution in soil rather than the vertical distribution. 
  
In addition to the resolution and support volumes, the different data types also 
have different spatial sampling density and different spatial coverage. Car survey 
data are, for example, limited to the locations along roads, even though their data 
provide relatively high-resolution dose rate, both in space and in time [5]. Walk 
surveys are further limited in spatial coverage and often clustered in several 
neighborhoods, since it takes time and physical labor for a person to walk around 
with a device, even though the walk survey could represent the health risk of an 
average person walking in the neighborhood. The airborne survey has the large 
spatial coverage at the regional scale, although the resolution is low due to the 
spatial averaging effect [6].  
 
Recently, Wainwright et al. [7] developed a Bayesian hierarchical modeling 
approach to integrate multiscale datasets (i.e., car, walk and airborne surveys), 
and also to estimate the spatial distribution of air dose rates at 1 m above the 
ground surface in high resolution across the regional scale. Bayesian approaches 
have been used in environmental science as a flexible and expandable framework 
to integrate multiscale datasets [8]. Wainwright et al. [7] demonstrated how this 
method could be used to integrate low-resolution and high-uncertainty airborne and 
car survey data with high-resolution (but sparse) walk survey data in a consistent 
manner. 
 
This study aims to apply their methodology to the area with a larger spatial extent 
and higher dose rates within the evacuation zones. We used the datasets collected 
in Fukushima Prefecture, Japan, in November 2014 by Japan Atomic Energy Agency 
(JAEA). Such integrated and more resolved maps are important for assessing the 
return of the residents and their potential exposure dose.  
 
METHODS 
 
A Bayesian hierarchical model consists of a series of statistical sub-models mainly 
in two categories: data models and process models. The process models—in this 
context—describe the spatial pattern (or map) of dose rates within the domain, 
representing the spatial trend and heterogeneity of contamination. The data models 
connect this pattern and the actual data, given measurement errors. These data 
models can represent, for example, a direct ground-based measurement or a 
function of the pattern—for example, spatial averaging over a certain area for a 
low-resolution airborne dataset. The overall model— a series of statistical 
submodels—is flexible and expandable, able to include complex correlations (such 
as correlations with land use, soil texture, or topography) or various observations. 
Once all the submodels are developed, we can estimate the parameters, as well as 
the radiation map and its confidence interval, using sampling methods or 
optimization methods. 
 
To develop an integrated map, we denote the radiation dose rate at i-th pixel by yi, 
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where i = 1, …, n. We also denote three datasets by three vectors, representing the 
airborne survey data zA (each data point is represented by zA,j, where j = 1,…, mA), 
car survey data zC (each data point is represented by zC,j, where j = 1,…, mC), and 
walk survey data (each data point is represented by zW,j, where j = 1,…, mW). The 
goal is to estimate the posterior distribution of the radiation dose-rate map y (i.e., 
the vector representing the radiation dose rates at all the pixels) conditioned on 
three datasets (zA, zC and zW), written as p(y |zA, zC, zW). By applying Bayes’ rule, 
we can rewrite this posterior distribution as: 
 
 p(y | zA, zC, zW) ∝ p(zA | y) p(zC | y)p(y|zW)    
 (1) 
 
We assume that the datasets are conditionally independent of each other, given the 
air dose rate distribution.  
 
The detail descriptions of mathematical formulation are available in Wainwright et 
al. [7]. The first distributions p(zA | y) and p(zC | y) represent the data models to 
connect the low-resolution data (i.e., airborne and car survey data) and air dose 
rate distribution at each pixel (y). The spatial average functions are included in 
these conditional distributions. We selected simple averaging for representing car 
surveys, and weighted averaging for airborne surveys, the weights of which were 
computed based on the radiation transport simulations [4]. The third distribution 
p(y |zW) represents the process model (i.e., geostatistical model [9]) to describe 
the spatial pattern given the measured dose rates in the walk surveys. We also 
assume that the parameters in the data and process models are estimated and well 
constrained through EDA, and hence they are fixed during this Bayesian estimation.  
 
RESULTS 
 
In this study, we integrated the three types of datasets over the evacuation zone 
(726km2) collected by JAEA in Fall 2014. In addition, we used the high-resolution 
land-use and land-cover map of Japan (version 14.02) created by Japan Aerospace 
Exploration Agency [10]. The domain is mostly covered by a forest (Figure 1a), 
although there are some urban areas (i.e., towns and villages) and cropland near 
the Pacific Ocean. By overlaying the car, walk and air survey data (Figure 1b), we 
see that the car and walk survey data show smaller-scale variability than the 
airborne data, and that the air survey data overestimates the air dose rate. 
Compared to the datasets used in Wainwright et al. [7], the dose rate is generally 
higher in the evacuation zone. In addition, the evacuation zone has a larger spatial 
coverage of forested areas, and less human activities.  
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       (a)           (b)    
Figure 1. (a) Land cover types (blue = urban, green = cropland and yellow = 
forest) and (b) original datasets (the car and walk survey data over the airborne 
data). In (b), the car and walk survey can be seen as lines and dots of lower-dose 
values compared to the surrounding air survey data. In (a) and (b), the red 
polygons are the evacuation zone extent. In (b), the black contour lines are the 
threshold of 20mSv/yr and 50mSv/yr. 
 
The comparison between the car and walk surveys (Figure 2) shows that the car 
survey underestimates the walk survey data, which is consistent with Wainwright et 
al. [7]. The correlation coefficients are high (>0.98) in all the land-use types. 
Simple averaging improves the correlation coefficients only slightly, which is 
different from Wainwright et al. [7]. This would be due to the fact that there are 
less human activities on the roads.  
 

 
      (a)                  (b)                   (c) 
Figure 2. Comparison between the car and walk survey data at co-located points in 
the evacuation zone (Fall 2014): (a) urban, (b) cropland, and (c) forest. The blue 
circles are the co-located points identified by the minimum distance. The pink 
circles are the averaged data (simple averaging). The numbers in each plot is the 
correlation coefficients based on the minimum distance (Min.D) and simple 
averaging (Simple). 

log10(Sv/h) 
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The comparison between the air and walk surveys (Figure 3) shows that the air 
survey overestimates the dose rate compared to the walk survey data. The blue 
circles (co-located points identified by the minimum distance) show larger 
scattering compared to the walk-car comparison, possibly due to the large spatial 
heterogeneity within the airborne survey footprints. The averaging improves the 
correlation to 0.99 in all land-cover types.  
 

 
      (a)                  (b)                   (c) 
Figure 3. Comparison between the air and walk survey data at co-located points in 
the evacuation zone (Fall 2014): (a) urban, (b) cropland, and (c) forest. The blue 
circles are the co-located points identified by the minimum distance. The pink 
circles are the averaged data, , using the weighted average based on the radiation 
transport simulations by Malins et al. [4]. The numbers in each plot is the 
correlation coefficients based on the minimum distance (Min.D) and weighted 
averaging (Malins)  
 

 
      (a)        (b)     
Figure 4. (a) Integrated radiation dose-rate map within the evacuation zone, and 
(b) the map of standard deviation, representing the uncertainty in the estimation. 
In (a), the black contour lines are the threshold of 20mSv/yr and 50mSv/yr. 
 

log10(Sv/h) log10(Sv/h) 
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The estimated map (mean field) from the data integration in Figure 4a shows more 
detailed and finer-resolution heterogeneity than the original airborne data 
(Figure1b), although the general trend is very similar. The systematic bias (or shift) 
in the airborne data was also corrected. The area of above 20mSv/yr is 218 km2 in 
the integrated map, which is smaller than the one in the original airborne survey 
(305 km2). Correcting such overestimation would be important, since 20mSv/yr is 
often used as the threshold value for the policy decisions. The map of standard 
deviation (Figure 4b) represent the estimation uncertainty. The urban areas have 
increased standard deviation, since the variability of air dose rates is high. The 
areas near the roads have smaller uncertainty, since the air dose rates are more 
constrained by the car and walk surveys.  
 
Figure 5 shows the validation result to evaluate the performance of the data 
integration and the dose-rate estimation. One hundred of the walk survey data 
were excluded from the estimation in each land-use type, and they were used for 
validation purposes. Without the data integration, the airborne data at co-located 
points (blue dots) exhibit larger scatters and a systematic bias compared to the 
walk survey data. After the data integration, the predicted values (based on our 
approach and the three datasets) are tightly distributed around the one-to-one line 
and are mostly included in the 99% confidence interval. Figure 5 shows that this 
method successfully estimates the fine-resolution dose-rate map based on the 
spatially sparse walk and car survey data and airborne data. Having such a 
confidence interval would be useful for practical applications, such as estimating the 
range of the potential health effects or evaluating the return scenarios for the 
evacuated zones. 
 

 
Figure 5. Comparison between the predicted and measured air dose rates (log-
transformed) at the walk-survey data locations not used for the estimation (Fall 
2014 data). The red dots represent the predicted values based on the data 
integration method; the blue dots are the co-located airborne data without using 
the integration. The black line is the one-to-one line; the red lines are the 95% 
confidence intervals. 
 
CONCLUSION 
 
In this study, we showed the second demonstration of out Bayesian data 
integration approach for the Fukushima evacuation zones with high air dose rates. 
The Bayesian hierarchical model developed by Wainwrithe et al. [7] was effective to 
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integrate multiscale, multitype dose-rate measurements, and also to create the 
high-resolution air dose rate over the large spatial extent. The estimated map 
captured more detailed spatial heterogeneity than the regional airborne survey 
data. In addition, the integrated map reflects the physical understanding of the 
radionuclide distribution found in the datasets; for example, the urban area has 
higher uncertainty and larger confidence intervals, particularly in the areas without 
walk survey datasets. Having the confidence intervals of possible air dose rates 
would help estimate health risks or plan the return to the evacuation zones in more 
robust manner in a more robust manner. In addition, the integrated map would be 
a critical initial condition for predicting the future air dose rates in the Fukushima 
region. 
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